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Received 7 March 1974, in final form 2 May 1974 

Abstract. High-field expansions are obtained for the three-state Potts model. These 
expansions are used to investigate the critical isotherm of the three-state system on a square 
lattice, and to determine the general properties of the transition in face-centred cubic systems. 

1. Introduction 

After a period of comparative neglect there has recently been a renewed interest in the 
three-state Potts model. Straley and Fisher (1973) have undertaken an extensive analysis 
of the square lattice system and have reviewed earlier work on the model. Alexander 
and Yuval (1973) have recently discussed series expansions, while Golner (1973) has 
used renormalization group techniques to investigate the model. 

One of the most interesting questions is the order of the transition. Baxter (1973) 
has indicated that the general q-state non-planar Potts model on a square lattice should 
have a first-order transition for q > 4. Ditzian and Oitmaa (1974) have suggested that 
the three-state model on a face-centred cubic lattice has a first-order transition. Golner 
finds that the transition is first-order in three dimensions. 

It seems quite probable that the field representations do not properly represent the 
Potts model. The Baxter result of a continuous transition for three-state systems appears 
to be contradicted by the results of Golner in two dimensions, and also by the work of 
Amit and Shcherbakov (1974) who treated a continuous Potts model by the Callan- 
Symanzik technique. The results in the present work indicate that in three dimensions 
there is a similar discrepancy between the results of discrete models and results for 
field models. 

The work presented here gives high-field expansions for the three-state model. 
Five high-field polynomials are obtained for the square, simple cubic, body-centred 
cubic, triangular and face-centred cubic lattices. The FCC series are used to study the 
transition. The five polynomials give a sufficient number of terms in the temperature 
grouping to give some hope of reliable results from the analysis. On lattices other than 
FCC a smaller number of temperature grouping terms are obtained. For these lattices 
additional high-field polynomials could be obtained by using the code method (Sykes 
et al 1965). This has been done for the square lattice and an estimate of 6 = 15.0f0.5 
has been obtained. The additional terms in the temperature grouping do not however 
extend the series given by Straley and Fisher and so we evaluated the expressions only 
at T,. 

The behaviour on the FCC lattice is still not entirely clear. If the transition is inter- 
preted as continuous then the exponents have the same general pattern as the exponents 
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on the square lattice. The critical point estimates are however widely scattered and 
predominantly above the critical point estimated from high temperature expansions. 
Estimates of the critical energy on each side of the transition seem to indicate that the 
transition is indeed continuous. 

The layout of the paper is as follows. Section 2 discusses high-field expansions, 
$ 3  considers the critical isotherm on the square lattice. Section 4 considers the FCC 
lattice. The high-field polynomials are given in the appendix, as are the ‘code’ expressions 
for the square lattice. 

2. High-field expansions 

The series that will be derived are expansions about a fully aligned state. All possible 
perturbations of up to five sites are considered and each perturbation is given the 
appropriate Boltzmann weighting up&& where n, m sites are perturbed from state 3 
into states 1 and 2, respectively, and p is the number of neighbour pairs that are not 
aligned. 

U = exp( - P J )  (1) 

P1 = exp(-Ph,) ( 2 )  

P ,  = exp(-Bh,) ( 3 )  
where h ,  , h,  are fields and J is the energy difference between aligned and non-aligned 
neighbour pairs. Each perturbation can be mapped onto a strong graph on the lattice, 
and if one considers graphs whose vertices are labelled 1 or 2 then there is a one-to-one 
correspondence. The numbers n, m are found by counting vertices and the number p 
is found by using a ‘linkage rule’ of the type described by Sykes and Gaunt (1973). 
Since p depends only on the topology of the graph and not on how it is embedded, it is 
possible to obtain expansions by considering all possible ‘decorations’ of the graphs 
given by Domb (1960). Straley and Fisher (1973) and Alexander and Yuval (1973) 
have effectively described the linkage rule in terms of weak graphs on the dual lattice. 
This is the basis of the duality transformation that can be used to obtain the transition 
temperature on the square lattice but it is not applicable to series in three dimensions. 

The configurational free energy is expanded as 

where the L,, are finite polynomials in U with the properties 

Lnm(U) = Lmn(U) (5) 

Ln,(u) = Ln(u2) (6)  
where the L, are the high-field polynomials for the spin 4 Ising model and are given by 
Sykes et a1 (1965). Other Lnm are given in the appendix. 

Another way of grouping the expansions on loose-packed lattices is to distinguish 
between fields on each of two sublattices A and B where all pairs of neighbours lie 
one on each sublattice. 

Writing expansions as 
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it is possible to obtain expressions for 

Fn(U, = 1 Lnm(U)pm. 
m 

The F, are obtained from strong graphs on a shadow lattice and the graphical information 
is expressed as codes. The codes represent contributions to F,, by means of the notation 

c(a, p, y ,  6, * . .) * cf;ys,f:. * . . (9 1 

For a q-state model on a lattice of coordination number z ,  appropriate f;: are 

fi = 1 +(q - l)puZ 

f2 = l+pU'-2+(q-2)pUZ-l 

f 3  = 1+pUz-4+(q-22)pUz-2 

fs = 1 + p U z - 6 + ( q - 2 ) p U ~ - 3  

f4 = 1 + 2 p ~ ~ - ~ + ( q - 3 ) p ~ ~ - ~  

f6 = 1 + p ~ ' -  + p ~ ' - ~  + (4 - 3)p~'-  

f7 = 1 + 3 p ~ ' - ~ + ( q - 4 ) p ~ ' - ~  

f s  = 1 +pUz-8+(q-2)pUz-4 

f9 = 1 +pUz-'+pU'-5+(q-3)p2-4 

f l o  = 1 + 2 p ~ ' - ~ + ( q - 3 ) 1 1 ~ ~ - ~  

f i l  = 1 + p ~ ' - ~ + 2 p ~ ' - ~ + ( q - 4 ) ~ ~ ~ - ~  

f i 2  = 1+4pU=-5+(q-5)pUZ-4. 

For q = 3 code expansions of Fo to F4 for the square lattice are given in the appendix. 

3. The critical isotherm of the square lattice 

As remarked in the introduction, the codes have not been expanded in full to obtain 
&(U) but have been evaluated at U, = *($ - 1) to give L,,(u,) and thence give the 
series 

All these code expansions are restricted to the case pl = p 2  = 11. More general codes 
could be obtained and may be useful in determining the full field dependence of the 
transition temperature. 

The spontaneous order is 

3 d  
2 ap 

Y = 1 --p-ln A. 

If one has 

Y - (1 - p)1'6 
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then 
d - p- In Y = enpn 

dP 
with 

e, - 1/6. 

This method of obtaining the e, to give estimates of 1/6 was found to be very successful 
in the Ising model (Gaunt and Sykes 1972). The (e,)-’ estimates are given in table 1 
and extrapolate to give 6 = 15.0f0.5 for the Potts model. 

Table 1. Estimates for the exponent 6 for the three-state Potts model on a square lattice. 
Obtained by taking - p(d/dp) In “(U,, p). See equations (22), (24) to (26). 

n 1 2 3 4 5 6 7 8 9 

$nd, 0.05385 0.02975 0.01763 0.01427 0.01092 OQ0941 0.00781 0.00693 O ~ o 0 6 0 9  
(em)-’ 18.57 16.02 17.28 15.87 16.24 15.59 1546 15.54 15.56 

The series estimates obtained by Straley and Fisher (1973) were 

a’ = 0.05 f0.1 (27) 

/? = 0*103+0*01 (28) 

7’ = 1.5f0.2 (29) 

r; = 1.1 f0.05 (30) 

a’ 2 0.07 (31) 

f l  2 0.07 (32) 

7’ 2 1.62. (33) 

but if one assumes the upper limits as bounds the Rushbrooke inequality implies 

The estimate 6 = 1520.5 together with the Griffith inequality a‘+p(1+6) 2 2 gives 
more stringent restrictions : 

a‘ 2 0.13 (34) 

/? 2 0.112 (35) 
while 6 = 15 requires that at least one of a’, f l  lies outside the range estimated by Straley 
and Fisher, but it is possible for them to be very near the range given so long as both 
a’, f l  lie near the upper limits of the estimates. In view of the value 6 = 15 occurring 
in a number of short-range two-dimensional systems it seems plausible that 6 = 15 
for the Potts model. 

4. The face-centred cubic lattice 

Unlike the square lattice the critical point is not known exactly for the FCC lattice so 
it is difficult to accurately determine the exponents, or even accurately determine the 
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transition temperature. Indeed, there is even doubt concerning the order of the transition. 
Some of the results presented here seem to indicate a continuous transition, but the 
renormalization group arguments of Golner (1973) predict a first-order transition and 
Ditzian and Oitmaa (1974) suggest that the transition is first order. 

In this section we consider the series 

In Z = )Nzln(x+2)-)PJNz+ x a n w n  (36) 

x = exp(PJ) (37) 

x-1  
x + 2  

w=- 

whence 

This is based on taking the fully aligned state as the zero of energy. z is the coordination 
number. The high-temperature expansion coefficients are obtained using techniques 
described by Domb (1974). Further details of the expansions for high temperatures will 
be given elsewhere. 

The low-temperature series considered are based on In A = Z lknm u k , u ~ , u ~  and are : 

spontaneous order 

specific heat 

energy 

U = J l k n m k U k  
knm 

parallel susceptibility 

perpendicular susceptibility 

11 = P 1 1 k n m ( n - m ) 2 U k .  (44) 
knm 

For critical point estimates, the work of Ditzian and Oitmaa (1974) gives 

U, = 0.769 +0*003 

on the basis of a six-term high-temperature susceptibility series. They suggest that this 
may not actually represent the transition temperature as the transition may be first 
order. 

By considering the statistics of self-avoiding walks, Domb (1974) obtains the estimate 

w,-' = 11.15k0.2 (45) 
or 

U, = 0.773 f0.003. (46) 
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This agreement of high-temperature estimates would still be quite possible even if the 
transition was first order. 

The most regular low-temperature critical-point estimates come from Pade approxi- 
mants to the logarithmic derivative of Y, It was first necessary to locate a pair of 
singularities at 0.541 f 0.002 f i(0.442 &0.002). Almost all approximants had one or 
more singularities in these general regions. Over 50 % of the approximants had a single 
conjugate pair of singularities within the range given above. This group seemed to 
give the most regular estimates of the physical singularity, and on the basis of results 
from this group we obtain 

U, = 0*770+0*002. (47) 
This result would tend to strongly suggest a continuous transition but the results for 
C, xll and xI gave many estimates of U ,  > 0.77. 

Briefly summarizing the results: 30% of approximants to (d/du)ln xl l  had a pair 
of roots in the regions 

0.53 1 f 0.002 f i(0.455 f 0.002). 

This set of approximants leads to 

U, = 0.772+0*005. 

The logarithmic derivative to the specific heat appears to have a pair of roots somewhere 
near 0.533 f0.452. No consistent pattern of U, estimates could be obtained. 

The perpendicular susceptibility also gave no very coherent pattern of U, estimates 
although when a root near 0.77 did occur it was generally somewhat above 0.77. There 
appears to be a pair of complex roots at 0.542 f0.002 + i(0.468 f 0.002). 

Both the amount of scatter of U ,  estimates and the 'overshoot' of the estimates from 
xL argue against a continuous transition. 

Additional evidence concerning the nature of the transition is obtained by extra- 
polating the energy series (39) and (42) to various transition temperatures. 

For U, = 0.770 the low temperature series (42) gives on the basis of Pade approxi- 
mants to U 

(48) U J J  = 2.48 & 0.02. 

The high-temperature series reduces to 

U,/J  = 6.0-2.36-0.981anw:-'n 
n 

with 
(49) 

a,w:- 'n = 48w: + 264~:  +2040w: + 15 5 2 8 ~ 2  + 125 412~:  + 652 3 6 8 ~ 2  + . . . . (50) 

Because, as pointed out by Straley and Fisher (1973), Pade approximants cannot 
really represent the energy, the high-temperature series was analysed by constructing 
the partial sums : 

n 

m 

U ,  = a,nw;-'. 
n = 3  

It was found that the U ,  varied linearly with l/m and extrapolated to 1.15+0.05. Thus 
assuming U, = 0.77 gives agreement between the critical energies, the high-temperature 
estimate being 2.51+0-05. Since the low-temperature series did not have the same 
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regularity as the high-temperature series and had to  be analysed by Pade approximants, 
it is probable that a larger ‘error range’ should be assigned to estimate (48). Although 
the accuracy of the energy estimates is not outstanding they do  appear to indicate a 
continuous transition. 

Assuming that the transition is continuous we can now return to the Pade approxi- 
mants to Y ,  xI1,  xI and C and investigate the critical exponents. This was done in the 
normal manner of constructing Pade approximants to (x,-x)(d/dx) lnf(x) for the 
various functionsf(x). In actual fact various powers of x were removed so that the 
series began with xo. The exponent estimates obtained were 

E’ = 0.37+0.10 

p = 0.184~0@04 

11’ = 1.0k0.15 

y i  = 0.6 (possibly). 

A similar value for fi  has been obtained independently (R V Ditzian, private communica- 
tion). 

The estimates for a‘, y’, y; were quite irregular. The ~1 = 0.6 was a common estimate 
but no meaningful error bounds can be assigned to this result since only half the approxi- 
mants gave values anywhere near 0.6. Attempts to estimate 6 found, not surprisingly, 
that the five terms available were not sufficient to give consistent estimates. a‘, p, y‘ 
have the same general behaviour as found by Straley and Fisher (1973) for the square 
lattice model ; E’ is in each case somewhat greater than the Ising model value (remember- 
ing that the 6 estimate in § 3 requires a fairly large a‘ in two dimensions). The p estimates 
were in each case somewhat below the Ising model values, as were the y’ estimates. 
The range of values obtained is consistent with the Rushbrooke inequality holding as 
an equality, that is, that scaling theory holds. It is not clear how to incorporate the 
exponent y ;  into a scaling scheme. 

If the exponents for the Potts model are in fact simple fractions, then it would be of 
interest to see how these fractions vary with the number of states. I t  is however reason- 
able to suppose that the fractions will in general be not quite as ‘simple’ as those for 
the Ising model, and so it seems pointless to guess what fractions might be represented 
by the estimates (52) to  (55). 

5. Conclusions 

While the work in the preceding sections has given a considerable amount of new 
information concerning the Potts model, general concepts of the behaviour of the model 
are lacking. In particular, the way in which the order of the transition changes with 
the dimensionality d, and the number of states q remains unclear. Ditzian and Oitmaa 
(1974) base their discussion on the position of the tricritical point but Straley and Fisher 
(1973) have cast doubt on the mean-field approximation type of tricritical point. It has 
been pointed out (D S Gaunt, private communication) that the Baxter result is consistent 
with a first-order transition for d + q > 4 (for d < 4). Implicit in both these arguments 
is the assumption that the mean-field approximation is correct in predicting a first-order 
transition for d = 4, q = 3, but this prediction has not really been verified. 



1624 I G Enting 

As remarked in earlier sections, there are a number of ways of obtaining extended 
series. Domb (1974) has shown how to obtain high-temperature free energy expansions. 
For low temperatures, high-field expansions obtained by the code method are available. 
The case of the triangular lattice is of particular interest. One divides the Iattice into 
three sublattices. When combining the expanded generating functions a field with 
components staggered between the three sublattices can be included. Such a field can 
be the ordering field for a three-state system in which non-parallel alignments are 
favoured. On the triangular lattice such an 'antiferromagnetic' system has a ground 
state that is unique (to within permutations) while on other lattices the 'antiferromagnetic' 
ground state is highly degenerate. Work on these and other aspects of the Potts model 
is currently in progress. 
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Appendix 

A.I .  High-jeld polynomials for  three-state Potts model 

Square lattice 

L , ,  = 4u7-5u8 

L,, = 12u9 - 10u'O - 32u" + 3 1 ~ 1 2  

L3, = 4 ~ ' ~ + 4 0 ~ ' '  - 3 4 ~ ' ~ - 2 1 2 ~ ' ~  + 1 7 4 ~ ' ~ + 2 3 6 ~ ' ~  - 2 0 9 ~ ' ~  

L22 = 4 ~ ' ~ + 2 " ' '  +8uI2 - 2 2 0 ~ ' ~  + 2 O d 4 + 4 7 2 d 5  - 3 1 3 4 ~ ' ~  

L4, = 8 ~ " +  1 2 ~ ' ~  + 1 4 O ~ ' ~ - 1 5 4 ~ ' ~ -  1 1 7 2 ~ ' ~  + 9 1 9 d 6  

+ 2 6 0 8 ~ ' ~  - 2 0 9 2 ~ ' ~  - 1 7 4 4 ~ ' ~  + 1 4 7 6 ~ ~ '  

L32 = 2 4 ~ ' ~  + 1 2 8 ~ ' ~ - 5 2 ~ ' ~ -  1 O O 0 ~ ' ~ - 5 1 0 ~ ' ~  + 4 0 0 0 ~ ' ~  

- 3 0 8 ~ ' ~ -  5232uI9+2952u2O. 

Simple cubic 

L1, = 6 ~ " - 7 ~ ' ~  

L2 = 3 0 ~ ' ~  - 2 1 ~ '  - 7 2 ~ "  + 6 4 ~ ' ~  

L3 1 = 1 2 ~ ' ~  + 1 8 6 ~ '  - 1 1 7 ~ "  - 8 0 8 ~ ~ '  + 5 6 7 ~ ~ ~  + 8 1 0 ~ ~ ~  - 6 5 1 ~ ~ ~  

L2, = 1 2 ~ "  + 1 2 6 ~ ' ~  + 8 1 ~ "  - 8 4 6 ~ ~ ~  - 1 8 ~ ~ ~  + 1620U23 - 976$424 

L4, = 4 8 ~ ~ ' + 8 4 ~ ~ ~  + 1 2 5 4 ~ ~ ~ - 9 1 7 ~ ~ ~ - 8 0 4 0 ~ ~ ~  + 5 0 5 8 ~ ~ ~  

+ 1 5 3 1 0 ~ ~ ~ -  1 0 6 1 1 ~ ~ ~ - 9 2 1 6 ~ ~ ~ + 7 0 3 1 ~ ~ ~  
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L32 = 1 4 4 ~ ~ ~  + 9 7 8 ~ ~ ~  + 3 5 7 ~ ~ ~ - 6 7 9 2 ~ ~ ' - 4 9 2 0 ~ ~ ~  +23 3 3 8 ~ ~ ~  

+ 483u2' - 27 6 4 8 ~ ~ ~  + 14 0 6 2 ~ ~ ' .  

Body-centred cubic 

L l l  = 8 ~ ' ' - 9 u ' ~  

L21 = 5 6 ~ ~ ' - 3 6 ~ ~ ~ - 1 2 8 ~ ~ ~ + 1 0 9 ~ ~ ~  

L31 = 4 8 ~ ~ ~ + 4 6 4 ~ ~ ~ - 3 0 0 ~ ~ ~ - 1 9 4 4 ~ ~ ~ + 1 3 0 0 ~ ~ ' +  1 8 9 6 ~ ~ ~ -  1 4 6 5 ~ ~ ~  

L22 = 4 8 ~ ~ ~ + 2 9 6 ~ ~ ~  +252u2' - 2 0 8 8 ~ ~ ~ -  1 0 4 ~ ~ ' + 3 7 9 2 ~ ~ ' - 2 1 9 7 i ~ ~ ~  

L4 1 = 3 6 ~ ~ '  + 2 4 0 ~ ~  + 3 4 8 ~ ~  + 41 5 2 ~ ~ ~  - 3 4 9 2 ~ ~ ~  - 26 1 84u3 

+ 16306u36+48336u37-32244u38-28368u39+20871u40 

L32 = 72u31 + 6 8 4 ~ ~ ~ + 3 3 9 2 ~ ~ ~ + 4 2 0 ~ ~ ~ - 2 1 7 8 4 u ~ ~ -  1 7 0 0 0 ~ ~ ~  

+ 74 2 5 6 ~ ~ ~  + 3 3 2 4 ~ ~ ~  - 85 1 0 4 ~ ~ ~  +41 7 4 2 ~ ~ ' .  

Triangular 

L l l  = 6~"-7u" 

L21 = 6u14+ 1 8 ~ "  - 2 1 ~ ' ~  - 6 0 ~ ' ~ + 5 8 ~ ' '  

L31 = 6 ~ ' ~  + 1 8 ~ ' ~  + 7 2 ~ ' ~ -  1 3 5 ~ ~ O - 4 7 8 ~ ~ '  $ 4 5 9 ~ ~ ~  + 5 7 6 ~ ~ ~  - 5 1 9 ~ ~ ~  

L22 = 1 2 ~ ' ~  + 3 0 ~ ' ~  + 1 0 2 ~ ' ~  - 2 0 1 ~ ~ ~  - 4 1 4 ~ ~ '  + 9 6 ~ ~ ~  + 1 1 5 2 ~ ~ ~  - 7 7 8 ) ~ ~ ~  

L41 = 1 2 ~ ' '  + 3 0 ~ ' ~  + 1 2 6 ~ ~ '  - 1 2 3 ~ ~ ~  - 1 5 6 ~ ~ ~  - 3 4 7 ~ ~ ~  - 2 9 9 4 ~ ~ '  

+ 3 3 4 8 ~ ~ ~  + 7 9 4 2 ~ ~ ~  - 7 1 0 1 ~ ~ ~  - 5 5 9 2 ~ ~ ~ + 4 8 5 6 u ~ '  

L32 1 2 ~ ' ~ + 4 2 ~ ~ ' +  1 2 6 ~ ~ ' + 3 6 ~ ~ ~  + 4 2 ~ ~ ~ - 7 9 5 ~ ~ ~ - 3 8 5 8 ~ ~ ~  

+ 2 0 9 4 ~ ~ ~ + 1 1 2 9 0 ~ ~ ~ -  1 9 2 3 ~ ~ ' - 1 6 7 7 6 ~ ~ ~ + 9 7 1 2 ~ ~ ' .  

Face-centred cubic 

Ll 1 = 1 2 ~ ~ ~  - 1 3 ~ ~ ~  

L2, = 2 4 ~ ~ ~  + 8 4 ~ ~ ~  - 7 8 ~ ~ ~ -  2 4 0 ~ ~ ~  +211u36 

L31 = 8 ~ ~ ~ + 4 8 ~ ~ ' +  1 6 8 ~ ~ ~  + 5 2 ~ ~ ~ + 8 1 6 ~ ~ ~ - 1 1 5 8 ~ ~ ~  

- 4 3 2 4 ~ ~ ~  + 3 5 2 2 ~ ~ ~  + 4 6 4 4 ~ ~ ~  - 3 7 7 7 ~ ~ '  

L 2 2  = 12u4'+ 9 6 ~ ~ '  + 3 0 0 ~ ~ ~  + 1 0 4 4 ~ ~ ~  - 1 4 2 8 ~ ~ ~  - 3 9 2 4 ~ ~ '  

+ 2 7 6 ~ ~ ~  + 9 2 8 8 ~ ~ ~  - 5 6 6 5 4 ~ ~ '  

L41 = 2 4 ~ ~ ~ + 9 6 ~ ~ ~  + 1 4 2 ~ ~ ~ + 6 2 4 ~ ~ ~ + 3 1 2 ~ ~ ' + 2 8 9 6 ~ ~ ~  

- 1 7 9 4 ~ ~ ~  - 3 7 2 ~ ~ ~  - 8 7 3 4 ~ ~ ~  - 65 1 2 4 ~ ~ ~  + 58 9 4 7 ~ ~ ~  

+ 145 1 4 4 ~ ~ ~  - 112 0 9 2 P  -91 5 8 4 ~ ' ~  + 71 5 1 6 ~ ~ '  

L32 = 9 6 ~ ~ ~ + 3 3 6 ~ ~ ~ + 8 7 6 ~ ~ ' + 2 5 8 4 ~ ' ~  + 1 8 7 2 ~ ' ~ + 4 0 5 6 ~ ~ ~ -  1 3 6 7 2 ~ ~ ~ - 8 0 7 3 6 ~ ~ ~  

+ 1 9 6 7 4 ~ ~ ~ + 2 0 7 9 2 8 ~ ' ~ -  11 2 9 2 ~ ~ ~ - 2 7 4 7 5 2 ~ ~ ~ +  1 4 3 0 3 2 ~ ~ ' .  
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A.2. Generating functions for three-state Potts model on square lattice 

Fo = In f l  

Fl = u4{2(4, 4)) 

F2 = u8{4(6,4, 2)+4(6,4,0,2)+4(7,6,1)+4(7,6,0,1)- 18(8, 8)} 

F3 = ~~~{258~12 ,12) -112(11 ,  10, 1)-112(11, 10,0, 1) 

+24(10,8, 1, 1)-84(10,8,2)-84(10,8,0,2)+8(8, 5,2,0, 1) 

+8(8,5,0,2,0,1)+ 16(8, 5, 1, 1,0, 1)+4(8,4,4)+4(8,4,0,4) 

+8(8,4,2,2)+ 16(9,6,0,3)+ 16(9,6,1,2)+ 16(9,6,2,1)+ 16(9,6,3)} 

F4 = u16{ -4532(16, 16)+2896(15,14, 1)+2896(15,14,0, 1) 

+ 1720(14, 12,2)+ 1720(14, 12,0,2)- 1200(14, 12,1,1) 

-796(13,10,3)-724(13, 10,2,1)-724(13,10,1,2) 

-796(13,10,0,3)- 170(12,8,4)+ 144(12,8,3,1)-332(12,8,2,2) 

+144(12,8,1,3)-170(12,8,0,4)+40(11,7,3,0,1) 

+80(11,7,2, 1,0, 1)+40(11,7,2, 1, 1)+ 120(11,7, 1,2,0, 1) 

+40(11,7,0,3,0, 1)+32(11,6,5)+32(11,6,4, 1) 

+64(11,6,3,2)+64(11,6,2,3)+32(11,6,1,4)+32(11,6,0,5) 

+16(10,6,2,0,2)+32(10,6,1,1,1,1)+32(10,6,1,1,0,2) 

+32(10,6,0,2,0,2)+ 16(10,6,2,0,0,2)+ 16(10, 5,4,0, 1) 

+ 16(10, 5,2,2, 1)+ 16(10,5,2,2,0, 1)+32(10,5,3, l,O, 1) 

-240(12,9,2,0, 1)-480(12,9, 1,1,0, 1)-240(12,9,0,2,0, 1) 

+32(10,5, 1,3,0, 1)+ 16(10,5,0,4,0, 1)+4(10,4,6) 

+ 12(10,4,4,2)+ 12(10,4,2,4)+4(10,4,0,6)+2(9,4,4,0,0,0,0, 1) 

+8(9,4,2,2,0,0,0,0, 1)+4(9,4,2,2,0,0,0,0,0, 1) 

+2(9,4,0,4,0,0,0,0,0, 1). 
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